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General approach to the localization of unstable periodic orbits in chaotic dynamical systems
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We present a method to detect the unstable periodic orbits of a multidimensional chaotic dynamical system.
Our approach allows us to locate in an efficient way unstable cycles of, in principle, arbitrary length with a
high accuracy. Based on a universal set of linear transformations the originally unstable periodic orbits are
transformed into stable ones, and can consequently be detected and analyzed easily. This method is applicable
to dynamical systems of any dimension, and requires no preknowledge with respect to the solutions of the
original chaotic system. As an example of application of our method, we investigate the Ikeda attractor in some
detail. @S1063-651X~98!13602-4#
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I. INTRODUCTION

The finding that unstable periodic orbits provide a sk
eton for the organization of the very complex chaotic dyna
ics can be considered one of the major advances in our
derstanding of the behavior of nonlinear dynamical syste
during the past ten years. Many physical quantities of th
systems can be determined by knowing the positions
properties of the unstable periodic orbits living in the chao
sea. For strange attractors belonging to dissipative system
quantitative description of their structural properties in ter
of unstable periodic orbits has been successfully used
several dynamical systems@1–5#. This reflects the impor-
tance of the cycles for the analysis and decoding of the
namics on the attractor. On the other hand, knowing the
sitions of the cycles in phase space, one can use them
control chaotic dynamical systems@6#. Moreover, the quan-
tum mechanical properties of classically chaotic conserva
systems possess, in the semiclassical regime, a series e
sion with respect to the lengths and stability coefficients
the periodic orbits~see Ref.@7# and references therein!.
Since chaotic behavior is an intrinsic property of many d
namical systems, periodic orbit theory possesses nume
applications in different areas of physics.

Assuming that the cycles represent the skeleton of
chaotic dynamical evolution of dissipative systems, one
use an appropriate series expansion in terms of their pe
to determine observables like fractal dimensions, aver
Lyapunov exponents, and entropies or the invariant mea
of the corresponding strange attractor@1–3,8,9#. The conver-
gence properties of this expansion allow us to test the ap
cability of current periodic orbit theory for the properties
dissipative dynamical systems. The most important, and
the same time most difficult, step of this procedure is to fi
the location of the unstable cycles in the chaotic sea: in s
of the fact that their number is growing exponentially wi
increasing period and that they are dense in the chaotic
the unstable cycles are of measure zero, whereas the ch
orbits are~for a fully chaotic system! of measure 1. How-
ever, once the location of the orbits is known, it is straig
571063-651X/98/57~3!/2739~8!/$15.00
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forward to extract their properties from the underlying equ
tions of motion. It is therefore not surprising that a numb
of recent works deal with the development of efficient me
ods and strategies for the detection of the periodic or
@10–12#.

The application of the Newton-Raphson method to fi
unstable cycles requires a good guess for the starting poin
the iterative procedure. For cycles of higher period this
only possible if one uses a very fine grid of initial conditio
on the attractor. Consequently this approach involves a h
numerical effort for more than two dimensions, and is the
fore in general not feasible. Alternative methods can
found in the literature but their applicability is limited t
special low-dimensional systems@10,12,13#.

The purpose of the present investigation is to establis
generally applicable as well as reliable and accurate met
in order to determine the unstable periodic orbits in a cha
dynamical system@14#. The basic idea of our approach is
use a universal set of linear transformations in order to tra
form the unstable periodic orbits of the original system in
stable periodic orbits which occupy the same positions
coordinate space. The stable periodic orbits of the tra
formed systems can then be found by simply iterating th
dissipative transformed systems. It can be shown that s
transformations exist in general, and possess very restric
and simple forms as well as an appealing geometrical in
pretation in terms of a vector field which is organize
through the positions of the cycles. To demonstrate the e
ciency of our method, we apply it to the attractor of th
two-dimensional Ikeda map@15# which describes the dynam
ics of an optical field in a ring cavity. We locate the unstab
periodic orbits up to period 13 of the Ikeda strange attrac
Subsequently we derive their stability coefficients and u
the expansions according to periodic orbit theory, in orde
determine the average Lyapunov exponents, the fracta
mension, and the topological entropy of the Ikeda attract

The paper is organized as follows: In Sec. II we pres
the general theoretical framework of our method, and disc
in more detail the case of a two-dimensional system. Furth
more, we present a universal algorithm for determining
2739 © 1998 The American Physical Society
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unstable periodic orbits of a multidimensional chaotic d
namical system. In Sec. III we use this algorithm to loc
the unstable periodic orbits of the Ikeda attractor. From th
location we derive the corresponding stability coefficie
which can be used to determine the average Lyapunov e
nents, the fractal dimension, and the topological entropy
the attractor. In Sec. IV we summarize the main aspect
our approach and briefly report on possible applications
well as perspectives related to the general problem of solv
nonlinear equations.

II. THEORETICAL FRAMEWORK

Let us consider anN-dimensional discrete fully chaoti
dynamical system given by

U: rW i 115 fW~rW i !. ~1!

U, being fully chaotic, possesses only unstable fixed po
~FP’s!. Since points of a periodic orbit of periodp are FP’s
of the pth iteratefW (p), the term FP’s stands in the followin
for periodic orbits in general, i.e., for orbits of any perio
We thereby have to replacefW in Eq. ~1! by fW (p). Our goal is
to construct different dynamical systems$Skuk51, . . . ,M %
from the mapU in Eq. ~1! ~see below! which possess FP’s a
the same positions asU but which, instead of being unstabl
have become stable in the dynamical systems$Sk%. The cor-
responding transformations$Lk :U→Sk% are required to pre-
serve the number of FP’s, i.e., no additional orbits should
created. The transformations$Lk% therefore change the sta
bility properties but not the location of the FP’s. The indexk
stands for the possibility that different orbits may requ
different transformations for their stabilization. However,
we shall see below, each type of transformation will stabil
not only a single FP but a whole rather general class
infinitely many FP’s ranging up to arbitrarily high periods.
we succeed with our plan then the search for the position
the FP’s of the systemU becomes a manageable task: b
cause of the stability of the FP’s in the transformed dissi
tive systems$Sk% each trajectory ofSk after some iterations
closely approaches a FPrWF . Per construction,rWF is then also
a FP of the systemU, and we therefore know the position o
the FP’s in the original systemU.

To fulfill the requirement of the one to one correspo
dence between the FP’s ofU andSk , the transformationLk
should in general be linear. ConsequentlySk takes on the
following appearance:

Sk : rW i 115rW i1Lk@ fW~rW i !2rW i #, ~2!

whereLk is a constant invertibleN3N matrix. Definition~2!
satisfies the one to one correspondence of the FP ofU and
those ofSk : If rW i5rWF is a FP ofU then the parenthesis o
the right hand side of Eq.~2! vanishes, and thereforerWF is
also a FP ofSk . On the other hand, ifrWF is a FP ofSk , and
Lk is nonsingular, the parenthesis on the right hand side
Eq. ~2! must be equal to zero forrW i5rWF , which implies that
rWF is also a FP ofU. Thus the dynamical lawsU and Sk
possess FP’s at identical positions in space.
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Our next step is to stabilize the FP of the transform
systemsSk by suitable choices forLk . Different unstable
FP’s of the mapU are then, in general, stable in differe
transformed dynamical lawsSk . However, as we shall se
below, the number of matrices$Lk% necessary to achiev
stabilization ofall FP’s is very small. It turns out that if the
absolute values of the elements of the matricesLk are suffi-
ciently small (ul i j

(k)u!1, i , j 51, . . . ,N), then there exists a
universal set of very restrictive matrices such that at least
matrix Lk belonging to this set transforms@via Eq. ~2!# a
given unstable FP ofU to a stable FP of the correspondin
map Sk . In order to determine this set of matrices let
consider the stability matricesTU andTSk

of U andSk which
obey the following relation:

Mk : TSk
511Lk~TU21!. ~3!

For TU we assume that it is real, invertible, and diagonal
able. SincerWF is an unstable FP, at least one of the eigenv
ues ofTU at rWF must possess an absolute value greater t
1. In order to stabilizerWF we proceed in two steps: first w
use the parametrization (Lk) i j 5(lCk) i j , with 1@l.0 and
Ci j 5O(1). The matrix Ci j has to be chosen such that th
real parts of all eigenvalues of the matrixCk(TU21) are
negative. If this is achieved then the next step is to us
sufficiently small value for the parameterl, such that the
eigenvalues of the matrixTSk

511lCk(TU21) have abso-
lute values less than 1. It can be shown that this is alw
possible ifl is sufficiently small: for sufficiently small val-
ues of l the leading contribution with respect tol in the
absolute values of the~in general complex! eigenvalues is of
orderl1, and emerges from the real part of the eigenvalu
of the transformed system. Consequently we have tra
formed the unstable FPrWF of U via Lk into a stable FP ofSk ,
thereby keeping its position fixed.

Next let us derive possible sets of matrices$Ck% which,
according to the above discussion, transform the signs of
real part of the eigenvalues ofTU21, and consequently al
low us to stabilize any configuration of unstable FP’s. Fi
we provide a rather general set of matrices, and subseque
specialize to a much more restrictive and simpler set. For
given TU it is possible to find an involutory matrixCk de-
fined throughCk

251, such thatA5Ck(TU21) has eigenval-
ues with negative real parts. The proof reads as follo
Assuming the diagonalizability of the matrixB5TU21,
there exists a similarity transformationP such that BD
5P21BP is diagonal. We then have

P21AP5P21CkPBD .

We can therefore always choose a diagonal matrixCDk
5P21CkP with elements61 on its diagonal such tha
CDkBD has eigenvalues with negative real part. Such a ma
CDk is, according to its definition, involutory. Due to th
invariance of the eigenvalue spectrum of a matrix with
spect to similarity transformations, the matrixA then also
has eigenvalues with a negative real part. In addition, ifCDk
is involutory then any matrix resulting fromCDk through
similarity transformations, and in particularCk , is also invo-
lutory. We can therefore always find an involutory matrixCk
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given by Ck5PCDkP
21, such thatCk(TU21) possesses ei

genvalues with negative real parts.
The set of involutory matrices is for our purposes rath

general. For reasons of applicability as well as practical
ficiency of our method it is therefore desirable to find
smaller set of transformation matrices. In fact it turns out t
a much more restricted form for the matricesCk is sufficient
in order to achieve stabilization of any FP via the transf
mations$Lk%, namely, all the matrices corresponding to sp
cial reflections and rotations in space. The elements of
new class of matrices$Ck% areCi j

(k)P$0,61%, and each row
or column contains only one element which is different fro
zero. The matricesCk are therefore orthogonal. The numb
aN of such matrices inN dimensional space is given byaN
5N! 2N.

To illuminate our approach, in the following we discu
the caseN52 in more detail. In this caseU is given by

xi 115 f ~xi ,yi !,

yi 115g~xi ,yi !, ~4!

and represents a fully chaotic two-dimensional~2D! map
with a 232 stability matrixTU . Let us denote withr1,2 the
eigenvalues ofTU . Being fully chaoticU possesses only
hyperbolic FP’s. The choice of the matrixCk appropriate for
the stabilization of a particular FP depends on the clas
which the hyperbolic FP belongs. According to the abo
discussion there area258 possible matrices$Ck% as candi-
dates to be used for this stabilization process. With so
algebra one can find the matrices which achieve the sta
zation of the different types of unstable FP’s.

~i! For hyperbolic FP’s with reflection andr1,21, 21
,r2,0⇒C151.

~ii ! For hyperbolic FP’s with reflection andr1,21, 0
,r2,1⇒C151.

~iii ! For hyperbolic FP’s with reflection andr1.1, 21
,r2,0 or hyperbolic FP without reflection (r1.1, 0,r2
,1) we have to distinguish between the following thr
cases:

~a!
] f

]xU
FP

.
]g

]yU
FP

⇒C25S 21 0

0 1D ,

~b!
] f

]xU
FP

,
]g

]yU
FP

⇒C35S 1 0

0 21D ,

~c!
] f

]xU
FP

5
]g

]yU
FP

⇒C45S 0 21

21 0 D or C55S 0 1

1 0D .

With the above choices forCk and sufficiently small val-
ues of the parameterl we can stabilize any hyperbolic FP o
a chaotic 2D system. The only exception where our appro
does not work is the case of a parabolic FP, i.e., for para
flow (r151~r251). However, this case is of no interest
the present investigation.

It is a major advantage of the present approach tha
single matrix$Ci% is responsible for the stabilization of a
infinite number of unstable FP’s belonging to periodic orb
of arbitrarily high periods. For example: the matrixC1 sta-
r
f-

t

-
-
is

to
e

e
li-

ch
el

a

bilizes hyperbolic FP’s~periodic orbits! with reflection with
respect to both invariant manifolds, independent of their
riod. We remark that only five of the eight matricesCk are
necessary to stabilize all hyperbolic FP’s in two dimensio
The matricesC4 andC5 typically stabilize no, or only a very
few additional, FP’s which is due to the fact that the con
tion (] f /]x)uFP5(]g/]y)uFP is met only very rarely. A simi-
lar statement also holds for higher-dimensional systems: o
a subset of the above given class ofaN matrices is actually
necessary in order to achieve the stabilization of any gi
FP. According to the above we have shown a one way
terion with respect to the stabilization of the FP. For e
ample: any hyperbolic FP with reflection (r1,21,21,r2
,0) in two dimensions can in particular be stabilized
using the matrixC1, but might also be stabilized by usin
other matrices of the setCk . The explicit statements sayin
which matrices stabilize which types of FP become incre
ingly more complex with increasing dimension of the d
namical system under investigation.

Having presented the basic features of our method,
now discuss briefly how it can be used to detect the unsta
FP of a givenN-dimensional discrete fully chaotic dynam
cal system. Using Eq.~2!, we transform the given dynamica
systemU into a new systemSk . For the matrixLk5lCk we
use a sufficiently small value ofl and C1 from $Ck%, k

51, . . . ,aN . Iterating an arbitrary initial pointrW0 with S1
from Eq.~2! forward in time, we observe the following cha
acteristic behavior: either the trajectory runs to a stabiliz
FP rWF with steps of continuously decreasing size or, if sta
lization is not achieved usingC1, the trajectory chaotically
evolves on the attractor or escapes to infinity. In order
obtain all the FP’s ofU, this procedure has to be repeated f
a representative set of starting points which covers in a cr
way ~see below! the phase space of the system. Subseque
we perform the same procedure for the next matrixC2 of the
setCk , etc., until all the matrices$Ck% have been used. Fol
lowing this procedure we obtain the complete set of FP’s
U. In order to find the unstable FP of periodi we simply
have to replacefW in Eq. ~2! by its i th iterate fW i . One must
however be careful with respect to the choice of the value
l in Lk because it is indirectly related to the stability coe
ficients of the desired cycle. We therefore have to use
creasing values ofl with increasing periods of the cycles w
would like to detect. However, later in the present section
will provide a continuous formulation of the transforme
systems which is independent of the value of the param
l. Due to the fact that different kinds of FP’s~e.g., hyper-
bolic FP’s with and different kinds without reflection! are
stabilized by different matricesCk , our stabilization proce-
dure offers the possibility to distinguish between the diffe
ent types of FP’s.

An important advantage of our stabilization method is
global character. Even points lying far from the linear neig
burhood of the stabilized FP’s are attracted to it after a f
iterations of the transformed dynamical law. To each FP o
certain period we can assign its basin of attraction consis
of the set of starting points which converge toward the s
bilized FP if we iterate them with the transformed dynamic
systemSk . With increasing period the typical volume of
basin of attraction becomes increasingly smaller, and the
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sins form a geometrically very complex and interwoven n
work which covers the attractor.

Using the above approach to detect the unstable peri
orbits of a given chaotic dynamical system, it turns out t
the number of starting points needed to obtain the perio
orbits of a given period on the~closure of the! attractor is
only a few times more than the number of cycle points the
selves. Suitable starting points for the application of
transformed dynamical lawSk can be obtained by using, fo
example, a chaotic trajectory on the attractor itself, or m
refined methods which cover the attractor in a more syst
atic manner. We used a simple empirical strategy in orde
seek for the periodic orbits of a given period. Assuming t
a certain number of periodic orbits of periodp have been
found, we iterate a multiple of the starting points used in
previous run. If no additional periodic orbits show up w
take the set of detected orbits as complete. We empha
that this is by no means a proof of the completeness of
set of detected periodic orbits. However, it turns out that
dynamical systems for which the periodic orbits are know
as for example the Henon map, the above procedure yi
all periodic orbits. Because of the fact that each FP posse
a finite basin of attraction~see below and Fig. 2!, the above
method turns out to be rather insensitive with respect to
specific choice of the set of starting points covering the
tractor in a crude and large-meshed manner.

The transformed dynamical law~2! possesses an appea
ing geometrical interpretation. Let$rW j , j 51, . . . ,p% be a
trajectory of the original systemU. At each point of the
trajectory we define a vector fieldVW U(rW j )5rW j 112rW j . The
corresponding transformationLk then represents a speci
reflection and rotation of each vectorVW U(rW j ) combined with
a subsequent scale transformation of its length with the
tor l. Using Eqs.~1! and ~2!, for the vector fieldVW Sk

of the
transformed map we obtain

VW Sk
~rW !5LkVW U~rW !. ~5!

The main feature of the new vector fieldVW Sk
is its global

organization around those FP’s which have been stabiliz
The flow of the vector fieldVW Sk

is centered and organize
around the positions of the stable FP which represent s
and/or sources of this vector field. To illustrate these prop
ties, in Fig. 1 we show selected vector fields belonging t
chaotic trajectory on the attractor of the Ikeda map~see also
Sec. III!. In Fig. 1~a! the vector fieldVW Sk

for the first iterate

fW1 is illustrated. We use a trajectory of 200 points and
stabilization matrixLk50.1C1. The global organization o
the flow towards the FPrWF5(0.5328,0.2469), whose pos
tion is indicated in Fig. 1 by a cross, is evident. Obvious
this property is not restricted or specific for the linear neig
borhood of the FP, but represents a global feature of
dynamical system. Starting with any point on the attrac
the trajectory of the transformed map moves immediat
towards the FP and yields with increasing number of ite
tions increasingly accurate values for its position. In Fi
1~b! and 1~c!, we show the vector fieldVW Sk

in the

vicinity of the FP’s rWF,15(0.5098,20.6084) and rWF,2
-
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5(0.6216,0.6059) for the second iteratefW (2) of the Ikeda
map which represent a period-2 cycle of the map. In F
1~b!, 200 points in the neighborhood ofrWF,1 are plotted. The
stabilization matrixLk50.02 C1 was used. In Fig. 1~c! we
use the same number of points as well as the same stab
tion matrix Lk to illustrate the organization of the vecto
field aroundrWF,2 . Again the positions of the FP’s are ind
cated by crosses. From Figs. 1~b! and 1~c!, it is evident that
the flow of the vector fieldVW Sk

can exhibit sharp, but still
smooth, turns in the immediate neighborhood of the FP. T
size of these regions of nonlinearity in general decrea
with increasing period of the cycle considered.

The fact that the stabilized FP represent the centers of
flow of the vector fieldVW Sk

possesses a counterpart in t

original chaotic systemU which we shall discuss briefly in
the following. If a chaotic trajectory approaches a FP,
more precisely enters the linear neighborhood of the FP
can be shown that the maximum of the deflection of
trajectory in the linear regime occurs for the position clos
to the FP. The deflection of the incident trajectory can
considered as a turning of the trajectory, and the point
maximum deflection~or curvature for continuous system!
can be considered as a generalization of the notion of a t
ing point in one dimension~see Refs.@16#!. Different chaotic
trajectories approaching the FP from different directions
space are deflected to different directions of their outgo
manifold. The common feature of chaotic trajectories in t
neighborhood of a FP is the fact that the above-mentio
deflection or turning occurs with respect to any direction
space. If the chaotic systemU is transformed via the corre

FIG. 1. ~a! The vector fieldVW Sk
belonging to the Ikeda map on

its attractor.~b! The corresponding vector field of the second itera
of the Ikeda map around the~stabilized! fixed points~0.5098 and
20.6084) belonging to the period-2 cycle of the Ikeda map.~c! The
vector field around the other fixed points~0.6216 and 0.6059! of the
period-2 cycle. The positions of the fixed points are indicated
crosses. 200 points have been used for each subfigure.
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sponding stabilizing transformationLk , the resulting dy-
namical systemSk possesses centers of the correspond
flow of the transformed system at the positions of the FP.Lk
can therefore be considered as a transformation from spr
ing to focusing flow.

The above-described method of detecting the unstable
~periodic orbits! for a given chaotic dynamical system in
volves the parameterl which has to be chosen sufficient
small in order to transform the unstable FP of the origi
chaotic system to a stable one via the transformationsLk .
With increasing period of the FP to be located, the param
l has to be chosen increasingly smaller in order to achi
stabilization. However, we should not choosel too small,
since the convergence of the iterated transformed dynam
laws @see Eq.~2!# to the FP will then become very slow, an
involves a waste of computer time. There is a simple way
avoid this tuning of the parameterl which makes our ap-
proach independent of the parameterl. Taking the limit
l→0 in Eq. ~2!, we obtain

lim
l→0

~rW i 112rW i !

l
5rẆ5Ck~ fW~rW !2rW !. ~6!

This equation represents the continuous formulation of
transformed discrete dynamical systems in Eq.~2!. Its solu-
tions possess the same nice properties as those of Eq.~2! in
the sense that any stabilized trajectory is running to a st
FP. The important difference, however, is that the solutio
of Eq. ~6! do not depend on the parameterl, and it can
therefore easily be solved by using any suitable integra
scheme such as, for example, a predictor-corrector integr

This means in particular that the basin of attraction fo
certain FP is now independent of the choice of the param
l, and represents a characteristics of the originally unsta
FP and the transformationLk . In Fig. 2 we show a typica
ensemble of trajectories which are solutions to Eq.~6! for a
given set of starting points for the case of the stabilized
riod two orbit of the Ikeda map~see Sec. III!. Part of the
trajectories run toward one point of the period-2 orbit, a

FIG. 2. Lines which represent an ensemble of trajectories of
transformed map in Eq.~2! for the stabilization of the period-2 orbi
of the Ikeda attractor. The circles indicate the positions of the po
of the period-2 orbit, and the line connecting the crosses indic
the boarder line between the two basins of attraction.
g
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P
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the other part toward the second point of the orbit. T
boarderline of the two basins of attraction represents an
stable one-dimensional manifold which is the only region
instability concerning the coordinate range of the Ikeda
tractor.

We emphasize that the above-described method for
detection of the unstable periodic orbits can be applied
any chaotic dynamical system independent of its dimens
and individual properties. The advantages of our appro
are obvious: given any chaotic dynamical system with a sk
eton of unstable periodic orbits, we can transform these
bits into stable periodic orbits of a different transformed d
sipative dynamical system. A large class of periodic orbits
thereby stabilized by the same linear transformation. The
sitions of the periodic orbits can then be obtained simply
iterating the transformed system or solving the differen
equations of its continuous formulation. In this way the F
can be determined with in principle arbitrary accuracy.

Finally we mention that our method is by no means
stricted to discrete dynamical systems. Periodic orbits in c
tinuous dynamical systems can be detected by using
Poincare´ map, which is again a discrete map representing
original continuous dynamical system in a chosen hyp
space. It is hereby not necessary for the Poincare´ map to be
given in an analytical form. The transformed dynamical s
tems can be obtained from Eqs.~2! and~6! for a numerically
given Poincare´ map. All the quantities given in these equ
tions are defined in the Poincare section which is
(N21)-dimensional space, and periodic orbits represen
finite number of points in this space, i.e., are of integer
riod in the Poincare´ section. It is therefore not necessary
know the period of the orbits in the continuous system
order to detect them in the Poincare´ section.

III. APPLICATION TO CHAOTIC DYNAMICAL SYSTEMS

We applied our method to several 2D iterative maps
for example, the Henon, 2D logistic, and in particular t
more complicated Ikeda map. In the following we will dis
cuss in some detail our procedure and the corresponding
sults for the Ikeda attractor.

To demonstrate the reliability as well as efficiency of o
method we use it to calculate the unstable periodic orbits
the Ikeda attractor. The underlying dynamical law is t
Ikeda map@15# used in nonlinear optics to describe the r
sponse of a two-level homogeneous absorber in a ring ca
to a constant incident light wave. The map is given by

UI : xn115110.9~xncoswn2ynsinwn!,

yn1150.9~xnsinwn1yncoswn!, wn50.42
6

11xn
21yn

2
.

~7!

The Ikeda attractor is fully chaotic and embedded in tw
dimensional coordinate space. Our considerations for thN
52 case described in Sec. II can therefore be applied
rectly. In detail we proceed as follows: Using the set of s
bilization matricesCi ,i 51, . . . ,5given in Sec. II, we con-
struct according to Eqs.~2! and~6! , the transformed system
which possess corresponding stable FP’s. Starting from
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initial point we next produce iteratively a chaotic trajecto
on the attractor which provides a set of starting points for
trajectories of the transformed dynamical systems which
solutions of Eqs.~2! and~6!. If a certain trajectory converge
to a point rWF within a given accuracy, then this point i
recorded as a FP of the Ikeda map. We repeated this pr
dure for the higher iterates of the Ikeda map up to the 1
iterate. The number of starting points on the attractor nee
to obtain the periodic orbits of period-13 is roughly 500
This is particularly impressive if we take into account th
some of the period-13 orbits differ only from their fourt
significant digit on and that the number of FP’s detected
period 13 is 2522. We are therefore in a position to resolv
large number of close lying periodic orbits. Again we em
phasize that we have no rigorous proof of the completen
of the detected orbits but empirical evidence.

The origin of the success of our stabilization transform
tion is its global character. Thus we need only a very coar
grained lattice of initial conditions to cover the attractor. F
the discrete formulation of our transformed dynamical s
tems@see Eq.~2!# the values of the parameterl necessary to
achieve stabilization vary from 1021 for orbits of low period
to a few times 1025 for periodic orbits of period 13. Anothe
important feature of our approach is the high accuracy wh
is controlled by the convergence of the corresponding tra
tories. Our calculations yield a relative accuracy of 10213.
Having determined the coordinates of the cycles, we use
Ikeda map in Eq.~7! to derive the corresponding stabilit
coefficients.

The corresponding results are presented in Table I.
first row shows the number of unstable cycles for a giv
period p, and in the second row the total number of cyc
points of orderN is given. Starting with one period 2 cycle
two period-3 cycles, and three period-4 cycles, their num
increases strongly with increasing period and finally for p
riods 12 and 13 we obtain 110 and 194 cycles, respectiv
With the help of the obtained orbits and their stability pro
erties we are in the position to determine characteristic qu
tities of the attractor related to its degree of chaoticity
dynamical and geometrical complexity. To obtain an impr
sion of the quality of the covering~representation! of the
Ikeda attractor through the unstable periodic orbits, in F
3~a! we illustrate the set of all the FP’s of the Ikeda map a
its higher iterates~up to the 13th iterate!. For comparison, in
Fig. 3~b! we present a typical chaotic trajectory on the attra
tor which possesses the same total number of points~5627!.
Although the overall picture looks very similar a more car
ful comparison of Figs. 3~a! and 3~b! reveals major differ-
ences in the local density of points. If we compare the d
tribution of the FP’s shown in Fig. 3~a! with the Ikeda
attractor of Fig. 3~b!, we realize that there exist region
within the support of the attractor which are not visited
periodic cycles up to period 13 at all. In addition there ex
regions of high density of FP’s@see Fig. 3~a!# which do not
correspond to regions of high density for the attractor its
@see Fig. 3~b!#.

In order to perform a quantitative analysis of the Ike
attractor in terms of the unstable cycles, let us first calcu
the measure of the exponential increase~with increasing pe-
riod! of their number or in other words the so called top
logical entropy defined through@17#
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FIG. 3. ~a! The set of all the fixed points o
the Ikeda map and its higher iterates up to peri
13. ~b! A typical chaotic trajectory on the Ikeda
attractor with the same number of points~5627!
as in ~a!.
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ST5 lim
p→`

1

p
lnn~p!, ~8!

wheren(p) denotes the number of FP’s ofUI
p . The values of

ST are presented in Table I~third row!, and they can be use
as a rough guide for the completeness of the number of
riodic orbits found for a given period. An average measure
the strangeness of the attractor is given in terms of the a
age Lyapunov exponents defined through@8#

he,c5 lim
p→`

(
j

1

me~rW jp!
lnme,c~rW jp! , ~9!

where rW jp denotes thej th FP of thepth iterate of the map
UI , and me(rW jp) @mc(rW jp)# is the expanding~contracting!
eigenvalue of the stability matrix at this point. The two e
ponents correspond to an average expanding rate (he) and an
average contracting rate (hc), respectively. The results as
function of periodp are presented in the fourth row of Tab
I. The strong fluctuations in successive terms of this exp
sion can be seen best in Fig. 4~a!, where the two Lyapunov
exponents are shown as a function of the periodp. To char-
acterize the strange attractor geometrically, we follow R
@1# and try to cover the attractor with slabs of length 1 a
width 1/mc(rW jp). In this case the corresponding Hausdo
dimensionDo can be found by solving the equation

(
j

mc~rW jp!Do
~p!

2151. ~10!

FIG. 4. ~a! The average Lyapunov exponents as a function
the periodp. ~b! The fractal dimensionDo of the Ikeda attractor as
a function of the periodp. See Sec. III.
e-
f
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n-

f.

f

The numerical results with increasing periodp are given in
the fifth and last row of Table I. The corresponding graphi
illustration is shown in Fig. 4~b!. Again strong oscillations
are present even for higher periods. Summarizing our an
sis of the Ikeda attractor, we observe a satisfactory con
gence of the topological entropy up to period 13, but stron
oscillating values for the fractal dimension as well as aver
Lyapunov exponents.

IV. CONCLUSIONS

The main objective of the present paper is the devel
ment of a general method to detect the unstable perio
orbits in chaotic dynamical systems. The central idea is
convert the unstable fixed points~periodic orbits! to stable
ones without changing their location in space. We ha
shown that this can be achieved by a set of linear trans
mations, i.e., transformation matrices, which allow the sta
lization of any configuration of unstable hyperbolic fixe
points for a given dynamical system. The numerical calcu
tion of the stable fixed points in the transformed dissipat
dynamical systems is done by either a simple iteration p
cedure or by solving the corresponding continuous version
the transformed dynamical laws.

The above approach allows a straightforward applicat
to any analytically or numerically given dynamical syste
Apart from its general applicability, the advantages of o
method are the following. It is of universal character in t
sense that no previous knowledges about the topologica
dynamical behavior, except the presence of chaos, are
quired. Our method is by no means restricted to low
dimensional~1D or 2D! systems but can in principle yield
periodic orbits for dynamical systems of any dimension.
allows an efficient convergence to highly accurate valu
and requires at the same time only a small set of initial c
ditions to cover the strange attractor: a coarse-grained c
ering is sufficient to detect the periodic orbits which a
within our empirical procedure assumed to be comple
Nevertheless even close lying periodic orbits of higher pe
ods can be resolved and, therefore, distinguished through
evolution of the stabilized system. The underlying stabiliz
tion transformation possesses an appealing geometrical i
pretation. While the dynamics of the original chaotic syste
in the vinicity of the fixed points is characterized by a ‘‘turn
ing’’ of trajectories@16# in any direction of coordinate space
the stabilized system belongs to a vector field which is c
tered around specified configurations of sinks and sour

f
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The positions of those sinks and sources are identical w
the positions of the fixed points. We remark that our meth
can also be applied to cases where the dynamical syste
not fully chaotic but consists of a chaotic sea filled w
islands of regularity.

The above method is not restricted to discrete dynam
systems: periodic orbits in continuous dynamical syste
can be detected by using the Poincare´ map which is again a
discrete map representing the original continuous dynam
system in a certain hyperspace. As a further perspective
application of the developed scheme, we mention the po
bility of solving nonlinear equations in general through t
iteration of a suitably stabilized version of the original equ
e,

cs
th
d
is

al
s

al
nd
si-

-

tions. Thereby we translate the problem of finding the ro

of a set of nonlinear equationsfW(xW )50W to that of finding the

fixed points of the dynamical lawFW (xW )5 fW(xW )1xW . Applying

the above method to obtain a stabilized version ofFW , we

obtain then by simple iteration the fixed points ofFW which
correspond to the roots offW .
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