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General approach to the localization of unstable periodic orbits in chaotic dynamical systems
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We present a method to detect the unstable periodic orbits of a multidimensional chaotic dynamical system.
Our approach allows us to locate in an efficient way unstable cycles of, in principle, arbitrary length with a
high accuracy. Based on a universal set of linear transformations the originally unstable periodic orbits are
transformed into stable ones, and can consequently be detected and analyzed easily. This method is applicable
to dynamical systems of any dimension, and requires no preknowledge with respect to the solutions of the
original chaotic system. As an example of application of our method, we investigate the Ikeda attractor in some
detail.[S1063-651%98)13602-4

PACS numbds): 05.45+b

I. INTRODUCTION forward to extract their properties from the underlying equa-
tions of motion. It is therefore not surprising that a number
The finding that unstable periodic orbits provide a skel-of recent works deal with the development of efficient meth-
eton for the organization of the very complex chaotic dynam-ods and strategies for the detection of the periodic orbits
ics can be considered one of the major advances in our ufi0-12.
derstanding of the behavior of nonlinear dynamical systems The application of the Newton-Raphson method to find
during the past ten years. Many physical quantities of thesanstable cycles requires a good guess for the starting point of
systems can be determined by knowing the positions anthe iterative procedure. For cycles of higher period this is
properties of the unstable periodic orbits living in the chaoticonly possible if one uses a very fine grid of initial conditions
sea. For strange attractors belonging to dissipative systemsoa the attractor. Consequently this approach involves a huge
guantitative description of their structural properties in termshumerical effort for more than two dimensions, and is there-
of unstable periodic orbits has been successfully used fdiore in general not feasible. Alternative methods can be
several dynamical systenid-5]. This reflects the impor- found in the literature but their applicability is limited to
tance of the cycles for the analysis and decoding of the dyspecial low-dimensional systemi$0,12,13.
namics on the attractor. On the other hand, knowing the po- The purpose of the present investigation is to establish a
sitions of the cycles in phase space, one can use them generally applicable as well as reliable and accurate method
control chaotic dynamical systerf§]. Moreover, the quan- in order to determine the unstable periodic orbits in a chaotic
tum mechanical properties of classically chaotic conservativelynamical systemil4]. The basic idea of our approach is to
systems possess, in the semiclassical regime, a series expaise a universal set of linear transformations in order to trans-
sion with respect to the lengths and stability coefficients ofform the unstable periodic orbits of the original system into
the periodic orbits(see Ref.[7] and references thergin stable periodic orbits which occupy the same positions in
Since chaotic behavior is an intrinsic property of many dy-coordinate space. The stable periodic orbits of the trans-
namical systems, periodic orbit theory possesses numerofigrmed systems can then be found by simply iterating these
applications in different areas of physics. dissipative transformed systems. It can be shown that such
Assuming that the cycles represent the skeleton of th&ransformations exist in general, and possess very restrictive
chaotic dynamical evolution of dissipative systems, one cand simple forms as well as an appealing geometrical inter-
use an appropriate series expansion in terms of their periggretation in terms of a vector field which is organized
to determine observables like fractal dimensions, averagtrough the positions of the cycles. To demonstrate the effi-
Lyapunov exponents, and entropies or the invariant measui@ency of our method, we apply it to the attractor of the
of the corresponding strange attradib+3,8,9. The conver-  two-dimensional Ikeda mgi5] which describes the dynam-
gence properties of this expansion allow us to test the applics of an optical field in a ring cavity. We locate the unstable
cability of current periodic orbit theory for the properties of periodic orbits up to period 13 of the Ikeda strange attractor.
dissipative dynamical systems. The most important, and gbubsequently we derive their stability coefficients and use
the same time most difficult, step of this procedure is to findthe expansions according to periodic orbit theory, in order to
the location of the unstable cycles in the chaotic sea: in spitdetermine the average Lyapunov exponents, the fractal di-
of the fact that their number is growing exponentially with mension, and the topological entropy of the Ikeda attractor.
increasing period and that they are dense in the chaotic sea, The paper is organized as follows: In Sec. Il we present
the unstable cycles are of measure zero, whereas the chaotie general theoretical framework of our method, and discuss
orbits are(for a fully chaotic systemof measure 1. How- in more detail the case of a two-dimensional system. Further-
ever, once the location of the orbits is known, it is straight-more, we present a universal algorithm for determining the
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unstable periodic orbits of a multidimensional chaotic dy- Our next step is to stabilize the FP of the transformed
namical system. In Sec. Ill we use this algorithm to locatesystemsS, by suitable choices fon,. Different unstable
the unstable periodic orbits of the Ikeda attractor. From theiFP’s of the mapU are then, in general, stable in different
location we derive the corresponding stability coefficientstransformed dynamical lawS,. However, as we shall see
which can be used to determine the average Lyapunov expdelow, the number of matricegA,} necessary to achieve
nents, the fractal dimension, and the topological entropy oftabilization ofall FP’s is very small. It turns out that if the
the attractor. In Sec. IV we summarize the main aspects ddibsolute values of the elements of the matridgsare suffi-
our approach and briefly report on possible applications agiently small Q)\i(jk)|<1, i,j=1,...N), then there exists a
well as perspectives related to the general problem of solvingniversal set of very restrictive matrices such that at least one
nonlinear equations. matrix A, belonging to this set transfornjsia Eq. (2)] a
given unstable FP df) to a stable FP of the corresponding
Il. THEORETICAL FRAMEWORK map S,. In order to determine this set of matrices let us
consider the stability matrice, andTs,of U andS, which

Let us consider amN-dimensional discrete fully chaotic obey the following relation:

dynamical system given by
o M Ts=1+A(Ty—1). 3
Ut ria=1f(rp). 2

For Ty we assume that it is real, invertible, and diagonaliz-

U, being fully chaotic, possesses only unstable fixed pointgple. Since'r is an unstable FP, at least one of the eigenval-

(I:Phs). Sr|]n.ce pm:;(tps) tha periodic ,Orb't O:; pgnqcro]j a;e”FP_S ues of Ty at FF must possess an absolute value greater than
of the pth iteratef ™, the term FP's stands in the following 1. In order to stabilize - we proceed in two steps: first we

for periodic orbits in geneigl, i.e., for ortz:tp? of any pe.r|od. use the parametrizat_iom@)ij =(\CQ;j ., with 1>X>0 and

We thereby have to repladein Eq. (1) by . Ourgoalis ¢ .= 0(1). Thematrix C;; has to be chosen such that the
to construct different dynamical systerf§|k=1,... M} rea| parts of all eigenvalues of the matG(T,—1) are
from the mapU in Eq. (1) (see belowwhich possess FP's at pegative. If this is achieved then the next step is to use a
the same positions &$ but which, instead of being unstable, sufficiently small value for the parametar such that the
have become stable in the dynamical syst¢8$. The cor-  gjgenvalues of the matriXs = 1+ AC(Ty—1) have abso-

responding transformat|9r{$k:U—>Sk} are reqwrgd to pre- lute values less than 1. It can be shown that this is always
serve the number of FP’s, i.e., no additional orbits should be

created. The transformations,} therefore change the sta- possible if\ is sufficiently small: for sufficiently small val-

- . . . ues of A the leading contribution with respect to in the
bility properties but not the location of the FP’s. The index . ; .
stands for the possibility that different orbits may requireabSOIUte values of thein general complexeigenvalues is of

l .
different transformations for their stabilization. However, asorder)\ » and emerges from the real part of the eigenvalues

we shall see below, each type of transformation will stabilizeOf the transformed system. Consequently we have trans-

not only a single FP but a whole rather general class oformed the unstable Fi of U via L, into a stable FP o,
infinitely many FP’s ranging up to arbitrarily high periods. If thereby keeping its position fixed. _ _

we succeed with our plan then the search for the positions of Next let us derive possible sets of matriGes; which,

the FP’s of the systert) becomes a manageable task: be-according to the above discussion, transform the signs of the
cause of the stability of the FP's in the transformed dissipal€al part of the eigenvalues 3,1, and consequently al-
tive systemgS,} each trajectory of, after some iterations low us to stabilize any configuration of unstable FP's. First
closely approaches a FR . Per constructiontx is then also we provide a rather general set of matrices, and subsequently

L specialize to a much more restrictive and simpler set. For any
aFp OT the systerpl_, and we therefore know the position of given Ty it is possible to find an involutory matri, de-
the FP’s in the original systerd.

. 2 _ _ . _
To fulfill the requirement of the one to one correspon—flned throughCi =1, such thatA=C(Ty— 1) has eigenval

dence between the FP's bf andS,, the transformatior., ues with negative real parts. The proof reads as follows:

should in general be linear. Consequerflly takes on the @]ssummg tthe dlgg.c;na_lzlzatbllltyf of tht_e ﬁmamBh:t-LU t_Bl,
following appearance: ere exists a similarity transformatioR suc atBp

=P 1BP is diagonal. We then have
S i =n+ALT(r) 1], ?) P~1AP=P 1C,PBp.

whereA, is a constant invertibldl X N matrix. Definition(2) ~ We can therefore always choose a diagonal ma@jx
satisfies the one to one correspondence of the FB ahd =P 'C,P with elements+1 on its diagonal such that
those ofS,: If r;=rg is a FP ofU then the parenthesis on CokBo has eigenvalues with negative real part. Such a matrix

the right hand side of Eq2) vanishes, and therefor is Cok is, according to its definition, involutory. Due to the

o invariance of the eigenvalue spectrum of a matrix with re-
also a FP o5, On the other hand, ifg is a FP ofS, and  ¢pect to similarity transformations, the matrx then also

Ay is nonsingular, the parenth(isis on the right hand side of 54 eigenvalues with a negative real part. In additioGf
Eq. (2) must be equal to zero faf=rg, which implies that s involutory then any matrix resulting frorp, through
re is also a FP ofU. Thus the dynamical laws) andS,  similarity transformations, and in particul@, is also invo-
possess FP’s at identical positions in space. lutory. We can therefore always find an involutory mattix
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given by Ck:pchp—l, such thatC,(T,—1) possesses ei- bilizes hyperbolic FP’gperiodic orbitg with reflection with
genvalues with negative real parts. respect to both invariant manifolds, independent of their pe-
The set of involutory matrices is for our purposes ratherriod. We remark that only five of the eight matric€g are
general. For reasons of applicability as well as practical efnecessary to stabilize all hyperbolic FP’s in two dimensions.
ficiency of our method it is therefore desirable to find aThe matrice<C, andCs typically stabilize no, or only a very
smaller set of transformation matrices. In fact it turns out thafew additional, FP’s which is due to the fact that the condi-
a much more restricted form for the matric@sis sufficient  tion (9f/9x)|ep=(3g/ dy)|ep is met only very rarely. A simi-
in order to achieve stabilization of any FP via the transfor-ar statement also holds for higher-dimensional systems: only
mations{L}, namely, all the matrices corresponding to spe-a subset of the above given classagf matrices is actually
cial reflections and rotations in space. The elements of thlﬁece%ary in order to achieve the stabilization of any given

; k . .
new class of matricefC,} areC{{? € {0,+ 1}, and each row  Fp. According to the above we have shown a one way cri-
or column contains only one element which is different fromterion with respect to the stabilization of the FP. For ex-

zero. The matrice€y are therefore orthogonal. The number gmple: any hyperbolic FP with reflectiop{<—1,—1<p,
ay of such matrices ifN dimensional space is given k& <0) in two dimensions can in particular be stabilized by

=N! 2N, using the matrixC;, but might also be stabilized by using
To illuminate our approach, in the following we discuss gther matrices of the s&, . The explicit statements saying
the caseN=2 in more detail. In this case is given by which matrices stabilize which types of FP become increas-
ingly more complex with increasing dimension of the dy-
Xi+1=T(Xi,Yi), namical system under investigation.
. Having presented the basic features of our method, we
Yie1=9(Xi Y1), @ how discuss briefly how it can be used to detect the unstable

FP of a givenN-dimensional discrete fully chaotic dynami-

and represents a fully chaotic two-dimensioiaD) map X i X
cal system. Using Eq2), we transform the given dynamical

with a 2X 2 stability matrixT, . Let us denote wittp, , the k )
eigenvalues off,. Being fully chaoticU possesses only SYStemU into a new systen$,. For the matrixA,=ACy we
hyperbolic FP's. The choice of the matiG appropriate for US€ @ sufficiently small value of and C, from {C, k

the stabilization of a particular FP depends on the class t&=1, - . . @y. lterating an arbitrary initial point, with S,
which the hyperbolic FP belongs. According to the aboveffom Eg.(2) forward in time, we observe the following char-
discussion there are,=8 possible matrice$C,} as candi- acteristic behavior: either the trajectory runs to a stabilized
dates to be used for this stabilization process. With som&Pr with steps of continuously decreasing size or, if stabi-
algebra one can find the matrices which achieve the stabililization is not achieved usin@,, the trajectory chaotically

zation of the different types of unstable FP’s. evolves on the attractor or escapes to infinity. In order to
(i) For hyperbolic FP’s with reflection angy,<—1, —1 obtain all the FP’s ofJ, this procedure has to be repeated for

<p,<0=C;=1 a representative set of starting points which covers in a crude
(i) For hyperbolic FP’s with reflection and;<—1, 0  way (see belowthe phase space of the system. Subsequently

<p,<1=C;=1 we perform the same procedure for the next maijof the

(iii) For hyperbolic FP’s with reflection angh>1, —1 setCy, etc., until all the matrice$C,} have been used. Fol-
<p,<0 or hyperbolic FP without reflectiorp(>1, 0<p, lowing this procedure we obtain the complete set of FP’s of
<1) we have to distinguish between the following threeU. In order to find the unstable FP of periodve simply

cases: have to replacd in Eq. (2) by its ith iteratef'. One must
however be careful with respect to the choice of the value of
(a)‘?_f >‘?_9 :sz( -1 O) N\ in Ay because it is indirectly related to the stability coef-
NKlep Y|ep 0 1)’ ficients of the desired cycle. We therefore have to use de-

creasing values of with increasing periods of the cycles we
1 0 would like to detect. However, later in the present section we
_(0 _1), will provide a continuous formulation of the transformed
systems which is independent of the value of the parameter
\. Due to the fact that different kinds of FP(s.g., hyper-
N 4:( 0 _1> or C5:(0 1)_ bolic FP’s with and different kinds without reflectipmare
P -1 0 1 0 stabilized by different matrice€,, our stabilization proce-
dure offers the possibility to distinguish between the differ-
With the above choices fa€, and sufficiently small val- ent types of FP’s.
ues of the parametar we can stabilize any hyperbolic FP of ~ An important advantage of our stabilization method is its
a chaotic 2D system. The only exception where our approacplobal character. Even points lying far from the linear neigh-
does not work is the case of a parabolic FP, i.e., for paralleburhood of the stabilized FP’s are attracted to it after a few
flow (p1=1\/p,=1). However, this case is of no interest to iterations of the transformed dynamical law. To each FP of a
the present investigation. certain period we can assign its basin of attraction consisting
It is a major advantage of the present approach that af the set of starting points which converge toward the sta-
single matrix{C;} is responsible for the stabilization of an bilized FP if we iterate them with the transformed dynamical
infinite number of unstable FP’s belonging to periodic orbitssystemS, . With increasing period the typical volume of a
of arbitrarily high periods. For example: the mat@ sta- basin of attraction becomes increasingly smaller, and the ba-
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sins form a geometrically very complex and interwoven net-

. . ——
work which covers the attractor. 1@ W 1 055 L ®) \\ \ £ \\
Using the above approach to detect the unstable periodic = “{"%m \ \\ ’ \\\\\

; . ' g . _ AR, ]
orbits of a given chaotic dynamical system, it turns out that 0 = =2 -0.60 \ \»’ \

the number of starting points needed to obtain the pe_riodic>’ at /ﬁ;&& ] :\

orbits of a given period on thé&losure of thg attractor is ”@‘{\\\ T e -0.65 k\\\\\, \ \\ \ ]
only a few times more than the number of cycle points them- 2l e 1 \Q,\i\*ﬁ \ % \\
selves. Suitable starting points for the application of the . ‘ 070 =~ .
transformed dynamical la8, can be obtained by using, for 0 1 2 0.5 0.6
example, a chaotic trajectory on the attractor itself, or more X X

refined methods which cover the attractor in a more system-

atic manner. We used a simple empirical strategy in order to '
seek for the periodic orbits of a given period. Assuming that 0.65 !///%//
5‘5’“&‘% 5/

a certain number of periodic orbits of periggdhave been

found, we iterate a multiple of the starting points used in the Yl — e

previous run. If no additional periodic orbits show up we = = =

take the set of detected orbits as complete. We emphasiz 055

that this is by no means a proof of the completeness of the T (©)

set of detected periodic orbits. However, it turns out that for 0.50 : :

dynamical systems for which the periodic orbits are known, 0.6 0.7

as for example the Henon map, the above procedure yields X

all periodic orbits. Because of the fact that each FP possesses .

a finite basin of attractiosee below and Fig.)2the above FIG. 1. (a) The vector fieldVs belonging to the lkeda map on

method turns out to be rather insensitive with respect to thés attractor (b) The corresponding vector field of the second iterate
specific choice of the set of starting points covering the atof the lkeda map around thistabilized fixed points(0.5098 and
tractor in a crude and large-meshed manner. —0.6084) belonging to the period-2 cycle of the Ikeda n{apThe

The transformed dynamical la(@) possesses an appeal- vector field around the other fixed poir{6216 and 0.605%f the
. . . . > period-2 cycle. The positions of the fixed points are indicated by
ing geometrical interpretation. LG{Irj, j=1,...p} be a

. Co . . 200 points h b d f h subfi .
trajectory of the original systemd. At each point of the crosses points have heen Lised for each stbhgure

trajectory we define a vector fieldy(r))=rj.,—r;. The o
corresponding transformatiob, then represents a special _(0'621.6’0'6059) for the s_econd iterait€) of the Ikeda .
map which represent a period-2 cycle of the map. In Fig.

reflection and rotation of each vectd(r;) combined with T . .
a subsequent scale transformation of its length with the fack(b), 200 points in the neighborhood of , are plotted. The

. R stabilization matrixA,=0.02 C; was used. In Fig. (t) we
tor X Using Eqgs(1) and(2), for the vector fleld\/s’k of the use the same number of points as well as the same stabiliza-

transformed map we obtain tion matrix A, to illustrate the organization of the vector

field aroundFF,Z. Again the positions of the FP’s are indi-
cated by crosses. From Figgbland Xc), it is evident that

the flow of the vector fielo}\75k can exhibit sharp, but still

The main feature of the new vector fie\dsa is its global . . . .

it d th EP’s which h b gt bil (imooth, turns in the immediate neighborhood of the FP. The
organization around those F=s which have been Stablliz€d;e of these regions of nonlinearity in general decreases
The flow of the vector fleld\/sk is centered and Organlzed with increasing period of the Cyc|e considered.

around the positions of the stable FP which represent sinks The fact that the stabilized FP represent the centers of the
and/or sources of this vector field. To illustrate these properfiow of the vector ﬁe|d\7Sk possesses a counterpart in the

ties, in Fig. 1 we show selected vector fields belonging to %riginal chaotic system which we shall discuss briefly in
chaotic trajectory on the attractor of the lkeda nisge also following. If a chaotic trajectory approaches a FP, or

Sec. llj. In Fig. 1(a) the vector fieldVs, for the first iterate  more precisely enters the linear neighborhood of the FP, it

f is illustrated. We use a trajectory of 200 points and thecan be shown that the maximum of the deflection of the
stabilization matrixA,=0.1C,. The global organization of trajectory in the linear regime occurs for the position closest
the flow towards the FH;F=(O 5328,0.2469), whose posi- to the FP. The deflection of the incident trajectory can be
tion is indicated in Fig. 1 by a crosé, is evioient. Obviouslycons.id(':‘red as a _turning of the trajectory,_ and the point of
this property is not restricted or specific for the linear neigh-maxImum deflection(or curvature for continuous systejns

borhood of the FP, but represents a global feature of th&an be considered as a generalization of the notion of a turn-
dynamical system. Starting with any point on the attractornd PoIntin one dimensiofsee Refs[16]). Different chaotic

the trajectory of the transformed map moves immediatel rajectories approaching Fhe FP fr_om Qifferent directions.in
: y P )}space are deflected to different directions of their outgoing

towards the FP and yields with increasing number of itera: fold. Th foat f chaotic traiectories in th
tions increasingly accurate values for its position. In Figs.ma_lnl old. 1heé common feature ot chaolic trajectories In the

b d h h feldV< in th neighborhood of a FP is the fact that the above-mentioned
1b) and Xc), we show the vector fieldVs in the  gefection or turning occurs with respect to any direction of

vicinity of the FP’s FF,1=(0.5098,— 0.6084) and FF,Z space. If the chaotic systebn is transformed via the corre-

Vs (N =AVy(1). (5)
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1l — the other part toward the second point of the orbit. The
I boarderline of the two basins of attraction represents an un-
stable one-dimensional manifold which is the only region of
] instability concerning the coordinate range of the lkeda at-
1 tractor.

We emphasize that the above-described method for the
detection of the unstable periodic orbits can be applied to
any chaotic dynamical system independent of its dimension
and individual properties. The advantages of our approach
are obvious: given any chaotic dynamical system with a skel-
eton of unstable periodic orbits, we can transform these or-
P . bits into stable periodic orbits of a different transformed dis-
0 1 2 sipative dynamical system. A large class of periodic orbits is
thereby stabilized by the same linear transformation. The po-
sitions of the periodic orbits can then be obtained simply by
FIG. 2. Lines which represent an ensemble of trajectories of th iterati_ng the t_ransfor_med system or_solving t_he differential

- %quatlons of its continuous formulation. In this way the FP

transformed map in Ed?2) for the stabilization of the period-2 orbit can be determined with in princiole arbitrary accurac
of the Ikeda attractor. The circles indicate the positions of the points P P y Y-

of the period-2 orbit, and the line connecting the crosses indicates .Flnally W.e mention thq’[ our method is .by .no m.ea.”s re-
the boarder line between the two basins of attraction stricted to discrete dynamical systems. Periodic orbits in con-

tinuous dynamical systems can be detected by using the
Poincaremap, which is again a discrete map representing the
riginal continuous dynamical system in a chosen hyper-

sponding stabilizing transformatioh,, the resulting dy-

namical syste ossesses centers of the correspondin . .
ystens, p P pace. It is hereby not necessary for the Poincaap to be

flow of the transformed system at the positions of the I5P. iven in an analytical form. The transformed dynamical sys-
can therefore be considered as a transformation from spreag- vt ' y . Y
ing to focusing flow ems can be obtained from Ed8) and(6) for a numerically
The above-described method of detecting the unstable F i(;/r?sn Z?éncsggggg' ﬁ]" mz qgsinntcl:t:frse gls\:aecr':icl)r; tr\]/\?r?i?:heqiga-a
(periodic orbitg for a given chaotic dynamical system in- : . - .
volves the parametex which has to be chosen sufficiently (.N._ 1)-d|men5|ona_l space, _and peno_dlc orbits represent a
small in order to transform the unstable FP of the originalf'.mte. number .Of points in thls_space, I.e., are of integer pe-
chaotic system to a stable one via the transformations riod in the Po_mcaresectmn. _It is therefore _not necessary t_o
With increasing period of the FP to be located, the paramete%nOW the period of the orbits n the continuous system in
: . : .~ grder to detect them in the Poincasection.
\ has to be chosen increasingly smaller in order to achieve
stabilization. However, we should not choasetoo small,

since the convergence of the iterated transformed dynamic#l- APPLICATION TO CHAOTIC DYNAMICAL SYSTEMS

laws[see Eq(2)] to the FP will then become very slow, and  \ye applied our method to several 2D iterative maps as,
involves a waste of computer time. There is a simple way Qo example, the Henon, 2D logistic, and in particular the
avoid this tuning of the parametar which makes our ap-  ore complicated Ikeda map. In the following we will dis-
proach independent of the parameter Taking the limit 55 in some detail our procedure and the corresponding re-
A—0 in Eq.(2), we obtain sults for the Ikeda attractor.

To demonstrate the reliability as well as efficiency of our
method we use it to calculate the unstable periodic orbits of
the lkeda attractor. The underlying dynamical law is the
Ikeda map[15] used in nonlinear optics to describe the re-
sponse of a two-level homogeneous absorber in a ring cavity
fo a constant incident light wave. The map is given by

fim 1) =), ©)
A—0 A

This equation represents the continuous formulation of ou
transformed discrete dynamical systems in &). Its solu-
tions possess the same nice properties as those dREin U, -
the sense that any stabilized trajectory is running to a stable H
FP. The important difference, however, is that the solutions
of Eq. (6) do not depend on the parameter and it can
therefore easily be solved by using any suitable integration 1+x§+yﬁ'
scheme such as, for example, a predictor-corrector integrator. 7

This means in particular that the basin of attraction for a
certain FP is now independent of the choice of the parameterhe Ikeda attractor is fully chaotic and embedded in two-
\, and represents a characteristics of the originally unstabldimensional coordinate space. Our considerations fol\the
FP and the transformation, . In Fig. 2 we show a typical =2 case described in Sec. Il can therefore be applied di-
ensemble of trajectories which are solutions to &j.for a  rectly. In detail we proceed as follows: Using the set of sta-
given set of starting points for the case of the stabilized pebilization matricesC; ,i=1, ... ,5given in Sec. Il, we con-
riod two orbit of the Ikeda mapsee Sec. I). Part of the struct according to Eq$2) and(6) , the transformed systems
trajectories run toward one point of the period-2 orbit, andwhich possess corresponding stable FP’s. Starting from an

Xn+1=1+0.9X,co0W,,— Y Sinw,),

VYn+1=0.9X,sinw,+y,cow,), w,=0.4—



The number of cycles with periof\

.,13(see Sec. Il

TABLE I.

, the total number of cycle points of ord®, the topological entropy, the Lyapunov exponents as well as the fractal dimension fﬁr
N

13

12

11

10

Number of cycles

14 26 45 76 110 194

10

with periodN

Number of cycle

21 51 71 127 241 473 837 1383 2523

15

points ordem

Topological

0.603
0.468

0.603
1.046

0.612

0.616

0.609
0.854

0.606
—1.220

0.609
0.490

0.655
—0.647

0.608
0.597
—0.793

0.648 0.677

0.547
—0.686

0.549
0.513
—0.648

0.0

entropy

0.688
—0.954

0.957

—1.313

1.071

0.884
—1.493

—1.144

0.735
—0.942

0.365
—0.453

Lyapunov

—0.639

—1.388

exponents
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Fractal

©
™~
—

1.68 1.76 1.95 1.83 2.04 1.78 2.06 1.95 2.02 1.81 2.13

1.00

dimension

initial point we next produce iteratively a chaotic trajectory
on the attractor which provides a set of starting points for the
trajectories of the transformed dynamical systems which are
solutions of Egs(2) and(6). If a certain trajectory converges

to a point FF within a given accuracy, then this point is
recorded as a FP of the Ikeda map. We repeated this proce-
dure for the higher iterates of the Ikeda map up to the 13th
iterate. The number of starting points on the attractor needed
to obtain the periodic orbits of period-13 is roughly 5000.
This is particularly impressive if we take into account that
some of the period-13 orbits differ only from their fourth
significant digit on and that the number of FP’s detected for
period 13 is 2522. We are therefore in a position to resolve a
large number of close lying periodic orbits. Again we em-
phasize that we have no rigorous proof of the completeness
of the detected orbits but empirical evidence.

The origin of the success of our stabilization transforma-
tion is its global character. Thus we need only a very coarse-
grained lattice of initial conditions to cover the attractor. For
the discrete formulation of our transformed dynamical sys-
tems[see Eq(2)] the values of the parameternecessary to
achieve stabilization vary from 18 for orbits of low period
to a few times 10° for periodic orbits of period 13. Another
important feature of our approach is the high accuracy which
is controlled by the convergence of the corresponding trajec-
tories. Our calculations yield a relative accuracy of 10
Having determined the coordinates of the cycles, we use the
Ikeda map in Eq(7) to derive the corresponding stability
coefficients.

The corresponding results are presented in Table I. The
first row shows the number of unstable cycles for a given
period p, and in the second row the total number of cycle
points of ordem is given. Starting with one period 2 cycle,
two period-3 cycles, and three period-4 cycles, their number
increases strongly with increasing period and finally for pe-
riods 12 and 13 we obtain 110 and 194 cycles, respectively.
With the help of the obtained orbits and their stability prop-
erties we are in the position to determine characteristic quan-
tities of the attractor related to its degree of chaoticity or
dynamical and geometrical complexity. To obtain an impres-
sion of the quality of the coveringrepresentationof the
Ikeda attractor through the unstable periodic orbits, in Fig.
3(a) we illustrate the set of all the FP’s of the Ikeda map and
its higher iteratesup to the 13th iteraje For comparison, in
Fig. 3(b) we present a typical chaotic trajectory on the attrac-
tor which possesses the same total number of pd5627.
Although the overall picture looks very similar a more care-
ful comparison of Figs. @) and 3b) reveals major differ-
ences in the local density of points. If we compare the dis-
tribution of the FP’s shown in Fig. (8 with the lkeda
attractor of Fig. 8), we realize that there exist regions
within the support of the attractor which are not visited by
periodic cycles up to period 13 at all. In addition there exist
regions of high density of FPsee Fig. 8a)] which do not
correspond to regions of high density for the attractor itself
[see Fig. &)].

In order to perform a quantitative analysis of the Ikeda
attractor in terms of the unstable cycles, let us first calculate
the measure of the exponential incre@séh increasing pe-
riod) of their number or in other words the so called topo-
logical entropy defined through 7]
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FIG. 3. () The set of all the fixed points of
the lkeda map and its higher iterates up to period
13. (b) A typical chaotic trajectory on the lkeda
attractor with the same number of poirf&627)

as in(a).
0 1 0 1
X X
1 The numerical results with increasing peripdare given in
Sr=lim —Inn(p), (8)  the fifth and last row of Table I. The corresponding graphical

p—ee illustration is shown in Fig. ). Again strong oscillations
are present even for higher periods. Summarizing our analy-
wheren(p) denotes the number of FP’s 0f . The values of  gjs of the Ikeda attractor, we observe a satisfactory conver-
Sy are presented in Table(third row), and they can be used gence of the topological entropy up to period 13, but strongly

as a rough guide for the completeness of the number of p&yscillating values for the fractal dimension as well as average
riodic orbits found for a given period. An average measure of yapunov exponents.

the strangeness of the attractor is given in terms of the aver-

age Lyapunov exponents defined throygh IV. CONCLUSIONS
1 R The main objective of the present paper is the develop-
he .= lim 2 ———Inpec(rjp), (99 ment of a general method to detect the unstable periodic
poe 1 pelljp orbits in chaotic dynamical systems. The central idea is to

convert the unstable fixed poin{periodic orbit$ to stable
wherer, denotes thgth FP of thepth iterate of the map ones without changing their location in space. We have
U,, and ue(ry) [re(r,)] is the expandingcontracting shown that this can be achieved by a set of linear transfor-
eigenvalue OfJEEhe stabji?ity matrix at this point. The two ex- mations, i.e., transformation matrices, which allow the stabi-

ponents correspond to an average expanding hajeand an Iizz?\tion of any configurgtion of unstable hyper_bolic fixed
average contracting ratd{), respectively. The results as a points for a given dynamical system. The numerical calcula-

function of periodp are presented in the fourth row of Table tion of the stable fixed points in the transformed dissipative

I. The strong fluctuations in successive terms of this expandynamical systems is done by either a simple iteration pro-

sion can be seen best in Figa# where the two Lyapunov cedure or by solving the corresponding continuous version of

exponents are shown as a function of the pepodo char-  (he transformed dynamical laws. L
acterize the strange attractor geometrically, we follow Ref, 1h€ above approach allows a straightforward application

[1] and try to cover the attractor with slabs of length 1 andt© @ny analytically or numerically given dynamical system.

dth L (7 In thi th dina Hausd fprart from its general applicability, the advantages of our

\c,jvilmensigﬁ[()rjpgénnbe ;zu%zszy sil\;agiizogqlljr;%ionaus O method are the following. It is of universal character in the
[0}

sense that no previous knowledges about the topological or
dynamical behavior, except the presence of chaos, are re-
2 MC(Fjp)Dgp)—lzll (10) qgired._Our method is by no means rgstric.ted. to Ipwer—
] dimensional(1D or 2D) systems but can in principle yield
periodic orbits for dynamical systems of any dimension. It
allows an efficient convergence to highly accurate values,

2 ! /\/\M 20 | ] and requires at the same time only a small set of initial con-
5 g ditions to cover the strange attractor: a coarse-grained cov-
§ 0 % ering is sufficient to detect the periodic orbits which are
2 E sl within our empirical procedure assumed to be complete.
g = Nevertheless even close lying periodic orbits of higher peri-
g -1f 2 ods can be resolved and, therefore, distinguished through the
~ (@) ‘ = o L® . evolution of the stabilized system. The underlying stabiliza-

5 10 ’ 5 10 tion transformation possesses an appealing geometrical inter-

period period pretation. While the dynamics of the original chaotic system

in the vinicity of the fixed points is characterized by a “turn-

FIG. 4. (a) The average Lyapunov exponents as a function ofing” of trajectories[16] in any direction of coordinate space,
the periodp. (b) The fractal dimensiol, of the Ikeda attractor as the stabilized system belongs to a vector field which is cen-
a function of the periog. See Sec. Ill. tered around specified configurations of sinks and sources.
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The positions of those sinks and sources are identical wittions. Thereby we translate the problem of finding the roots

the positions of the fixed points. We remark that our methodf g set of nonlinear equatiorigx) =0 to that of finding the

can also be applied to cases where the dynamical system fi&ed points of the dynamical Ia\ﬁ(i)zf(i)Jr)Z Applying

not fully chaotic but consists of a chaotic sea filled with ) . TR

islands of regularity. the above method to obtain a stabilized versionFefwe
The above method is not restricted to discrete dynamicabbtain then by simple iteration the fixed points Bfwhich

systems: periodic orbits in continuous dynamical systemgorrespond to the roots df

can be detected by using the Poincarap which is again a

discrete map representing the original continuous dynamical

system in a certain hyperspace. As a further perspective and ACKNOWLEDGMENT

application of the developed scheme, we mention the possi-
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